Selected 3 Case Histories




Radiographic Inspection for Creep Fissures in Reformer-Furnace Tubes
Case History involving Material: HK-40 (Austenitic cast stainless steel)
Abstract: Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (stress rupture). A project for detecting midwall creep fissuring was instigated as a result of the failure. It was concluded after laboratory radiography and macroexamination that if the fissure were large enough to show on a radiograph, either with or without the catalyst, the tube could be expected to fail within 1 year. The set up for in-service radiograph examination was described. The tubes of the furnace were radiographed during shut down and twenty-four tubes in the first furnace and 53 in the second furnace showed significant fissuring. Although, radiography was concluded to be a practical technique to provide advance information, it was limited to detecting fissures caused by third-stage creep in tubes because of the cost involved in removing the catalysts.
Failure Category: Fracture
Failure Type: Creep fracture/stress rupture

Failure of a Reformer Tube Weld by Cracking
Case History involving Material: HK-40 (Austenitic cast stainless steel)
Abstract: An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided by internal carburization. Quality control of welding procedures and filler metal was recommended.
Failure Category: Fracture, Processing-related
Failure Type: Creep fracture/stress rupture, Joining-related failures

Creep Damage in Welds of Reformer Furnace Tubing
Case History involving Material: HK-40 (Austenitic cast stainless steel)
Abstract: A sample tube was removed from a reformer furnace for life assessment after 69,000 h of service. Sections were cut from the tube, which was a spindle cast A297 Grade HK 40 (25 Cr, 20 Ni, 0.4 C) austenitic steel of 122.5 mm outside diameter and 10.5 mm nominal wall thickness. They were examined metallographically on transverse sections and on longitudinal sections through the butt welds joining the separate cast segments of the tube. Creep damage was mainly concentrated within the inner one third of the wall thickness. The use of damage assessment parameters in evaluating the reformer tube remaining life showed the welds to be inadequate, and to have a strength and creep resistance below those of the base metal.
Failure Category: Fracture
Failure Type: Creep fracture/stress rupture